Laser Installed for Engraving and Cutting

After a lot of research, I chose a NUBM44 6W 450nm solid state laser. I was debating whether to use lower powered lasers that could produce a finer beam, but I wanted to try the higher power in case it could cut thicker materials or work at faster speeds. So far, I am happy with the choice. I am getting an engraved line that is 0.5mm wide in wood. That is fine enough for the work I envision doing with it.

I purchased the laser, driver, and heatsink all as a package. The driver has two wires for the power supply, and it has an on/off control line, but there was no wire provided. I would have to solder a wire to the driver board, which is inaccessible since the board was bonded inside of the heatsink. If I were to do it again, I would order the driver separately or ask to have a lead added for the control line.

My workaround was to connect a 12 vdc relay between the power supply and the laser driver. I wired the coil to the 12 vdc supply and Output 1 of the G540, pin 5 of the breakout. The switch contacts of the relay control the 12 vdc supply to the laser driver. I’m using M62 and M65 to switch the laser on/off in the g-code.

Here’s a video of my first project with the laser.

Emergency Stop Switch Installed

I haven’t had a need yet for an e-Stop switch, but I figured I should go ahead and install it before the need arises! I’m still amazed at how quickly I can model a part, create the CAM setup, and then create the part on the CNC machine. It took less than an hour to model the bracket, create the CAM setup and toolpaths, and produce a g-code file to bring out to my machine, all with Fusion 360. I cut the bracket from some scrap 0.25” plywood and mounted the switch on the front of the machine. One side of the switch was wired to pin 10 on the Gecko G540 breakout and the other side connected to ground on the power supply.

cnc e-stop switch